DETAILED PROJECT REPORT ON INSTALLATION OF FLUE GAS ANALYSER TO REDUCE EXCESS AIR AND OPTIMISING FURNACE COMBUSTION EFFICIENCY (BATALA, JALANDHAR, LUDHIANA

Bureau of Energy Efficiency (BEE)

Prepared By

Reviewed By

INSTALLATION OF FLUE GAS ANALYSER TO REDUCE EXCESS AIR AND OPTIMISING FURNACE COMBUSTION EFFICIENCY

BATALA, JALANDHAR, LUDHIANA FOUNDRY CLUSTER

BEE, 2011

Detailed Project Report on installation of flue gas analyser to reduce excess air and optimising furnace combustion efficiency

Foundry SME Cluster, Batala, Jalandhar, Ludhiana (Punjab) (India)

New Delhi: Bureau of Energy Efficiency

Detail Project Report No.: BJL/FUR/ EXA/01

For more information please contact

Bureau of Energy Efficiency (BEE)

(Ministry of Power, Government of India) 4th Floor, Sewa Bhawan R. K. Puram, New Delhi – 110066 Telephone+91-11-26179699 Fax+91-11-26178352 Website: <u>www.bee-india.nic.in</u> Email: jsood@beenet.in/pktiwari@beenet.in

Acknowledgement

We are sincerely thankful to the Bureau of Energy Efficiency, Ministry of Power, for giving us the opportunity to implement the 'BEE SME project in "BJL Foundry Cluster, Batala, Jalandhar & Ludhiana". We express our sincere gratitude to all concerned officials for their support and guidance during the conduct of this exercise.

Dr. Ajay Mathur, Director General, BEE

Smt. Abha Shukla, Secretary, BEE

Shri Jitendra Sood, Energy Economist, BEE

Shri Pawan Kumar Tiwari, Advisor (SME), BEE

Shri Rajeev Yadav, Project Economist, BEE

CII – AVANTHA Centre for Competitiveness for SMEs, Confederation of Indian Industry (CII) is also thankful to Industry Associations for their valuable inputs, cooperation, support and facilitating the implementation of BEE SME program in BJL Foundry Cluster.

We take this opportunity to express our appreciation for the excellent support provided by Foundry Unit Owners, Local Service Providers, and Equipment Suppliers for their active involvement and their valuable inputs in making the program successful and in completion of the Detailed Project Report (DPR).

CII – AVANTHA Centre for Competitiveness for SMEs, Confederation of Indian Industry (CII) is also thankful to all the SME owners, plant in charges and all workers of the SME units for their support during the energy use and technology audit studies and in implementation of the project objectives.

CII – AVANTHA Centre for Competitiveness for SMEs

Confederation of Indian Industry

Chandigarh

Contents

List of A	Annexure	vii
List of Tables v		
List of F	Figures	viii
List of A	Abbreviation	viii
Executi	ve summary	ix
About E	BEE'S SME program	xi
1.	INTRODUCTION	1
1.1.	Brief Introduction about the Cluster	1
1.1.1.	Energy Usage Pattern	1
1.1.2.	Classification of Units	1
1.1.3.	Production Wise Unit Breakup	2
1.1.4.	Products Manufactured	2
1.2.	Process Flow diagram of a Foundry Cluster	2
1.3.	Energy performance in existing situation	4
1.3.1.	Average Production	4
1.3.2.	Energy Consumption	4
1.3.3.	Specific Energy Consumption	5
1.4.	Proposed Technology/Equipment	5
1.4.1.	Description about the existing technology	5
1.5.	Establishing the Baseline for the Proposed Technology	6
1.5.1.	Losses in Existing Technology	7
1.6.	Barriers in adoption of proposed technology	7
1.6.1.	Technological Barrier	7
1.6.2.	Financial Barrier	7
1.6.3.	Skilled Manpower	8

2.	PROPOSED TECHNOLOGY
2.1.	Detailed Description of Technology9
2.1.1.	Description of Technology9
2.1.2.	Benefits of Optimizing Combustion Efficiency of Furnace by Reducing Excess Air
2.1.3.	Technology Specification11
2.1.4.	Suitability or Integration with Existing Process and Reasons for Selection11
2.1.5.	Availability of Technology11
2.1.6.	Source of Technology 9
2.1.7.	Terms and Conditions after Sale9
2.1.8.	Process down Time during Implementation9
2.2.	Life Cycle Assessment9
2.3.	Suitable Unit for Implementation of the Identified Technology

3.	ECONOMIC BENEFITS FROM PROPOSED TECHNOLOGY	10
3.1.	Technical Benefits	10
3.1.1.	Electricity savings per year	10
3.1.2.	Fuel consumption savings per year	10
3.1.3.	Improvement in product quality	10
3.1.4.	Improvement in production	10
3.1.5.	Reduction in raw material consumption	10
3.1.6.	Reduction in other losses	10
3.2.	Monetary Benefits	10
3.3.	Social Benefits	11
3.3.1.	Improvement in Working Environment in the Plant	11
3.3.2.	Improvement in Skill Set of Workers	11
3.4.	Environmental Benefits	11

4.	INSTALLATION OF THE PROPOSED TECHNOLOGY	12
4.1.	Cost of Technology Implementation	12
4.1.1.	Technology Cost	12
4.1.2.	Other Cost	12
4.2.	Arrangements of Funds	12
4.2.1.	Entrepreneur's Contribution	12
4.2.2.	Loan Amount	12
4.2.3.	Terms & Conditions of Loan	12
4.3.	Financial Indicators	12
4.3.1.	Cash Flow Analysis	12
4.3.2.	Simple Payback Period	13
4.3.3.	Net Present Value (NPV)	13
4.3.4.	Internal Rate of Return (IRR)	13
4.3.5.	Return on Investment (ROI)	13
4.4.	Sensitivity analysis in realistic, pessimistic and optimistic scenarios	13
4.5.	Procurement and Implementation Schedule	14

List of Annexure

Annexure 1:	Energy audit data used for baseline establishment15		
Annexure 2:	Detailed Technology Assessment Report	16	
Annexure 3:	Detailed Financial Calculations17		
Annexure 4:	Procurement and implementation schedule21		
Annexure 5:	Break-up of Process down Time22		
Annexure 6:	Details of technology service providers	23	
Annexure 7:	Quotations or Techno-commercial bids for new technology	y 24	

List of Tables

Table 1.1	Production Wise Unit Breakups	2
Table 1.2	Annual Production Capacities	4
Table 1.3	Annual Energy Consumption (Electricity)	4
Table 1.4	Annual Energy Consumption (Coal & Furnace Oil)	5
Table 1.5	Specific Energy Consumption	5
Table 1.6	Baseline Establishment	6
Table 3.1	Monetary savings	10
Table 3.2	Proposed Flue Gas Composition	11
Table 4.1	Details of Proposed Technology Installation Cost	12
Table 4.2	Financial Indicators of Proposed Technology	13
Table 4.3	Sensitivity Analysis in Different Scenarios	14
Table 4.4	Procurement and Implementation Schedule	14

List of Figures

Figure 1.1	Process flow diagram of Typical foundry Units	3
Figure 1.2	Production Capacity BJL Foundry cluster	4
Figure 2.1	Combustion efficiency1	0

List of Abbreviations

BEE	Bureau of Energy Efficiency
SME	Small and Medium Enterprises
DPR	Detailed Project Report
GHG	Green House Gases
PF	Power Factor
EEF	Energy Efficient Motor
CDM	Clean Development Mechanism
DSCR	Debt Service Coverage Ratio
NPV	Net Present Value
IRR	Internal Rate of Return
ROI	Return on Investment
MT	Metric Tonne
SIDBI	Small Industries Development Bank of India

EXECUTIVE SUMMARY

Confederation of Indian Industry is executing BEE-SME program in Batala, Jalandhar and Ludhiana Foundry Cluster, supported by Bureau of Energy Efficiency (BEE) with an overall objective of improving the energy efficiency in cluster units.

Batala, Jalandhar and Ludhiana Foundry cluster, is one of the largest Foundry clusters in India; accordingly this cluster was chosen for energy efficiency improvements by implementing energy efficient measures / technologies, so as to facilitate maximum replication in other Foundry clusters in India. The main energy forms used in the cluster units are grid electricity & fuel.

Most of the Industrial installations in the country have large electrical loads which are severely inductive in nature, such as motors, large machines etc which results in a high power consumption. Also many foundry units have cupola or rotary furnaces that use coke or furnace oil as fuel. There are particular parameters mentioned set for the exhaust. Deviation from the standards would lead to excess fuel consumption. This can be taken care by having a flue gas analyzer and monitoring the exhaust parameters.

Monitoring of the exhaust flue gas parameters with a flue gas analyzer and setting of the damper settings improves the furnace efficiency. In this case reducing the percentage oxygen content from excess 9% to optimum 6 % would lead to fuel saving by optimising furnace combustion efficiency. It helps in reducing the fuel consumption. Project implementation will lead to reduction in fuel bill by ` 0.48 Lakh per year.

This DPR highlights the details of the study conducted for the Flue gas Analyzer in melting Furnace, possible Energy saving and its monetary benefit, availability of the technologies/design, local service providers, technical features & proposed equipment specifications, various barriers in implementation, environmental aspects, estimated GHG reductions, capital cost, financial analysis, sensitivity analysis in different scenarios and schedule of Project Implementation.

This bankable DPR also found eligible for subsidy scheme of MoMSME for "Technology and Quality Upgradation Support to Micro, Small and Medium Enterprises" under "National Manufacturing and Competitiveness Programme". The key indicators of the DPR including the Project cost, debt equity ratio, monetary benefit and other necessary parameters are given in table.

S. No.	Particular	Unit	Value
1	Project cost	`(in lakh)	1.00

S. No.	Particular	Unit	Value
2	Monetary benefit	`(in lakh)	0.48
3	Debit equity ratio	Ratio	3:1
4	Simple payback period	years	2.07
5	NPV	(in lakh)	0.76
6	IRR	%age	30.97
7	ROI	%age	26.12
8	Process down time	weeks	0.5
9	DSCR	Ratio	1.97
10	Co ₂ reduction	Tonne/year	6.4

<u>The projected profitability and cash flow statements indicate that the project</u> <u>implementation will be financially viable and technically feasible.</u>

ABOUT BEE'S SME PROGRAM

Bureau of Energy Efficiency (BEE) is implementing a BEE-SME Programme to improve energy performance in 29 selected SMEs clusters. Batala, Jalandhar and Ludhiana Foundry Cluster is one of them. The BEE's SME Programme intends to enhance energy efficiency awareness by funding/subsidizing need based studies in SME clusters and giving energy conservation recommendations. For addressing the specific problems of these SMEs and enhancing energy efficiency in the clusters, BEE will be focusing on energy efficiency, energy conservation and technology up gradation through studies and pilot projects in these SMEs clusters.

Major Activities in the BEE - SME Program are furnished below:

<u>Activity 1:</u> Energy Use and Technology Audit

The energy use technology studies would provide information on technology status, best operating practices, gaps in skills and knowledge on energy conservation opportunities, energy saving potential and new energy efficient technologies, etc for each of the sub sector in SMEs.

Activity 2: Capacity Building of Stake Holders in Cluster on Energy Efficiency

In most of the cases SME entrepreneurs are dependent on the locally available technologies, service providers for various reasons. To address this issue BEE has also undertaken capacity building of local service providers and entrepreneurs/ managers of SMEs on energy efficiency improvement in their units as well as clusters. The local service providers will be trained in order to be able to provide the local services in setting of energy efficiency projects in the clusters.

Activity 3: Implementation of Energy Efficiency Measures

To implement the technology up gradation projects in clusters, BEE has proposed to prepare the technology based detailed project reports (DPRs) for a minimum of five technologies in three capacities for each technology.

<u>Activity 4:</u> Facilitation of Innovative Financing Mechanisms for Implementation of Energy Efficiency Projects

The objective of this activity is to facilitate the uptake of energy efficiency measures through innovative financing mechanisms without creating market distortion.

1. INTRODUCTION

1.1. Brief Introduction about the Cluster

Indian foundry industry is very energy intensive. The energy input to the furnaces and the cost of energy play an important role in determining the cost of production of castings. Major energy consumption in medium and large scale foundry industry is the electrical energy for induction and Arc furnaces. Furnace oil is used in rotary furnaces. In Small foundry industry, coal is used for metal melting in Cupola furnaces. The energy costs contribute about 25 - 30% of the manufacturing cost in Indian foundry industry.

There are approximately 450 units, engaged in Foundry Cluster (automobile parts, agricultural implements, machine tools, diesel engine components, manhole covers, sewing machine stands, pump-sets, decorative gates and valves) production. The major locations wherein the units are spread are G.T. Road, Industrial area, Focal Point in Batala. In Jalandhar Dada Colony Industrial Area, Focal point, Focal Point Extn, Udyog Nagar, I.D.C, Kapurthala Road & Preet Nagar. In Ludhiana Focal Point Phase 5 to 8, Janta Nagar, Bhagwan Chowk Area & Industrial area – A/B.

Availability of Electricity in Batala – across Dhir Road, GT Road is an issue; power is available from the grid for maximum 12/14 hours a day. There are some units in Jalandhar and Ludhiana having induction furnace in the range of 500 kg to 1 ton capacity whereas other units which are using local scrap as well as have high melting temperatures are having cupola and rotary furnace and has a capacity of minimum 5 ton per day.

The foundry produces a wide variety of castings such as manhole covers, pipe and pipe fittings, sanitary items, tube well body, metric weights, automobile components, railway parts, electric motor, fan body etc. 90% of the castings produced are from the SSI sector.

1.1.1. Energy Usage Pattern

Major energy sources being used in foundry cluster are electricity and fuels such as Coal, Furnace Oil, and Diesel. Electrical energy is being used in melting of iron in induction furnaces, operation of electrical utilities and thermal energy is being used in cupola furnaces operation.

1.1.2. Classification of Units

Broadly units are classified with respect to production capacity;

Large Scale Units

- Medium Scale Units
- Small Scale Units

1.1.3. Production Wise Unit Breakup

Foundry cluster at Batala, Jalandhar and Ludhiana can be broken into three categories viz. small, medium and large size unit. Table 1.2 shows that production wise breakup of Foundry cluster.

Table 1.1	Production	Wise	Unit	Breaku	ps
					~ ~

S. No.	Type of Unit	Production Capacity
1	Large scale unit	More than 1500 MT
2	Medium scale unit	250 to 1500 MT
3	Small scale unit	Less than 250 MT

1.1.4. Products Manufactured

Foundry SME cluster at Batala, Jalandhar and Ludhiana produces a wide variety of castings such as manhole covers, pipe and pipe fittings, sanitary items, tube well body, metric weights, automobile components, railway parts, electric motor, fan body etc.

1.2. Process Flow diagram of a Foundry Cluster

The manufacturing process is described as below;

Melting Section:

The raw material is melted in melting furnace. The melting furnace can be an induction furnace or rotary or arc furnace or cupola furnace. Molten metal from the melting furnace is tapped in Ladles and then transferred to the holding furnaces. Typically the holding furnaces are induction furnaces. The holding furnace is used to maintain the required molten metal temperature and also acts as a buffer for storing molten metal for casting process. The molten metal is tapped from the holding furnace whenever it is required for casting process.

Sand Plant:

Green sand preparation is done in the sand plant. Return sand from the molding section is also utilized again after the reclamation process. Sand Muller's are used for green sand preparation. In the sand millers, green sand, additives and water are mixed in appropriate proportion. Then the prepared sand is stored in bunkers for making moulds.

Pattern Making:

Patterns are the exact facsimile of the final product produces. Generally these master patterns are made of Aluminum or wood. Using the patterns the sand moulds are prepared.

Mould Preparation:

In small-scale industries still the moulds are handmade. Modern plants are utilizing pneumatic or hydraulically operated automatic molding machines for preparing the moulds. After the molding process if required the cores are placed at the appropriate position in the moulds. Then the moulds are kept ready for pouring the molten metal.

Casting:

The molten metal tapped from the holding furnace is poured into the moulds. The molten metal is allowed to cool in the moulds for the required period of time and the castings are produced. The moulds are then broken in the shake out for removing the sand and the used sand is sent back to the sand plant for reclamation and reuse. The castings produced are sent to fettling section for further operations such as shot blasting, heat treatment etc. depending upon the customer requirements.

1.3. Energy performance in existing situation

Major energy sources being used in foundry cluster are electricity and fuels such as Coal, Furnace Oil, and Diesel. Electrical energy is being used in melting of iron in induction furnaces, operation of electrical utilities and thermal energy is being used in cupola furnaces operation.

1.3.1. Average Production

The Average Production of the Foundry Units in above mentioned category during Year 2009-10 are as follows;

Figure 1.2 Production Capacity BJL Foundry cluster

Table 1.2 Annual Production Capacities
--

S. No.	Production Capacities	% of Units
1	Above 1500 Metric Tonne	11
2	250 to 1500 Metric Tonne	33
3	Below 250 Metric Tonne	56

1.3.2. Energy Consumption

Energy consumption (electrical) in a typical Foundry plant for different types of products is given in Table 1.3 below:

Table 1.3 Annual Energy Consumption (Electric	city)
---	-------

Electricity Consumption Pattern	Unit Consumed in kWh	Total Unit Consumption kWh	
Blower Motor for Cupola	962100		
Rotary Motor for Rotary Furnace	330000	26.92 Lakh	
Melting material in Induction Furnace	1400000		

Table 1.4Annual Energy Consumption (Coal & Furnace Oil)		
Thermal Energy Consumption Pattern	Consumption per Year	
Coal for Cupola	5000 Metric Tonnes	
Furnace Oil for Rotary Furnace	17.8 Lakhs Litter	

1.3.3. Specific Energy Consumption

Specific energy consumption of Foundry units depends upon the production capacity & their corresponding power consumption. Specific energy consumption also depends on type of furnace. A brief summary of specific energy consumption depending upon type of furnace is shown in below table;

Table 1.5 Specific Energy Consumption

S. No	Types of Furnace	Types of Fuel	Specific Fuel Consumption / One kg Molten Material	Cost of Fuel in `
1	Cupola	Coal	0.2 kg	2.6
2	Rotary Furnace	Furnace Oil	0.15 Lt	4.20
3	Induction Furnace	Electricity	0.6 kWh	3.0

*Assuming Coal rate Rs.15.0 /kg

*Assuming F.O rate Rs. 28.0 /Lt.

*Assuming electricity rate Rs 5.0/kWh

1.4. **Proposed Technology/Equipment**

1.4.1. Description about the existing technology

During energy audit in the foundry units at Batala, Jalandhar and Ludhiana region, it was found that maximum units are using Blast Copula for melting. The installed furnace is utilized for melting the material at temperature of 1300 to 1500°C. Cupola is the most common type of melting furnace used for the production of grey iron castings in all foundries. Some of the contributing factors that were identified for this poor energy performance are listed below.

- \triangleright Incorrect blast rate
- \triangleright Lower blast air pressure
- \triangleright Incorrect distribution of air between the top and lower tuyeres
- \triangleright Turbulent (non-linear) entry of air into the cupola

- Incorrect sizing of cupola parameters such as tuyere area, well depth, and stack height among others
- Poor operating and maintenance practices
- > Presence of excess oxygen in exhaust gas
- > Poor control of feed materials (shape, size, weight, sequence)

1.5. Establishing the Baseline for the Proposed Technology

Presently all the Foundry units in Batala, Jalandhar and Ludhiana are operating with conventional cupola furnace. Coal is being used in cupola furnaces in foundry sector. Flue gas analyses were carried out on site of cluster units to check the excess air levels of furnace. Results of flue gas analysis are mentioned below;

Flue Gas Analysis:

Parameters

Excess Oxygen %	9.95 %
Excess Air %	90 %
Flue Gas Temp. ⁰ C	250-300

It can be interpreted from the above that furnace is being operated at higher oxygen levels than the recommended value. Presently Foundry units in Batala, Jalandhar and Ludhiana are operating blast cupola furnaces without any flue gas analyzer. Installation of a flue gas analyzer will help optimize the combustion efficiency by reducing excess air.

Table 1.6	Baseline Establishment
-----------	------------------------

S. No.	Parameters	Unit	Value
1.	Oxygen % in Flue Gases	%	9.95
2.	Excess Air in Flue Gases	%	90.0
3.	Temperature of Flue gases	OC	250 - 300
4.	Raw Material	Tonne / batch	2.38
5.	Coal Consumption (` 15/Kg)	Kg/batch	384.8
6.	Raw Material rejection	Kg/batch	160
7.	Cost per batch	∑ batch	5772
8.	Annual Production Cost	`(in lakh)/ year	14.43
9.	Annual Coal Consumption	Tonne / Annum	96.2

1.5.1. Losses in Existing Technology

Losses due to lower CO₂ level

When the CO₂ content of the flue gas is low (less than 8 percent) heat is lost in flue gases. Low carbon dioxide content may be caused by;

- ✓ Small burner nozzle
- ✓ Air leakage into the furnace or boiler
- ✓ Under-firing in the combustion chamber

> Losses due to higher oxygen level

Higher oxygen level in flue gas indicates that these utilities are fed with more air than the actual requirement for complete burning. It means higher loss due to heat carried away by the flue gases, because with each unit volume of oxygen about 3.5 volume of nitrogen gas is also coming with the air and carrying away the heat from the furnace as flue gases. On the other side forced draft fan is doing more work and consuming much power to supply this excess amount of air.

1.6. Barriers in adoption of proposed technology

1.6.1. Technological Barrier

- Lack of awareness and information of the loss in terms of coal consumption of conventional cupola and a divided blast cupola furnace
- Due to lack of technical knowledge and expertise, conventional cupola furnaces are used in the Foundry units.
- In this cluster, like many others, there is lack of leadership to take up the energy efficiency projects in the plant.

1.6.2. Financial Barrier

Availing finance is not the major issue. Among the SMEs, the larger units, if convinced they are capable of either financing it themselves or get the finance from their banks. The smaller units will require competitive loan and other support to raise the loan. However as most of them have been able to expand their setup and grow, there is readiness to spend for energy efficiency technologies which have good returns. Energy Efficiency Financing Schemes such as SIDBI's, if focused on the cluster, will play a catalytic role in implementation of identified energy conservation projects & technologies.

1.6.3. Skilled Manpower

In Foundry cluster at Batala, Jalandhar and Ludhiana, the availability of skilled manpower is one of the limitations; this issue gets further aggravated due to more number of Foundry units as compared to the availability of skilled manpower. For major equipments of Foundry units like Cupola furnace for maintenance or the repair works of these equipments take care by the equipment suppliers itself.

2. PROPOSED TECHNOLOGY

2.1. Detailed Description of Technology

2.1.1. Description of Technology

Combustion flue gas analysis has been used by power plant operators for decades as a method of optimizing the fuel/air ratio. By measuring the amount of excess oxygen and/or CO in the flue gases resulting from combustion, plant operators can ensure that their facility works at the best heat rate efficiency and avoids unnecessary NOx and greenhouse gas emissions. The theoretical ideal, or the stoichiometric point, is that in which all fuel is reacted with available oxygen in the combustion air, with none of any of the two reactants left over. Operating furnaces never attain this ideal, however, and the best operating point usually will result in 1-3 per cent excess air, and 0-200PPM of CO. This optimum operating point is different for every furnace, and also varies for differing loads, or firing rates. A higher firing rate induces greater turbulence through the burner(s), providing better mixing of fuel and air, and enabling operation with a lower excess O₂ before unburned fuel (represented by CO) appears, or "breaks through". Again, this ideal O₂ operating point will vary with firing rate, so a function generator is usually developed from test data to assign the ideal O₂ control point based upon an index of firing rate, such as fuel flow or steam flow.

Large furnace operators will typically dynamically control oxygen to the optimal level via the distributed control system. Control of CO is more difficult, since target levels are usually in the PPM range, and making fan or damper adjustments small enough to control at these low levels is difficult. Many operators will make manual adjustments based upon the CO signal, or use the measurement as a feed forward signal to adjust the O_2 control set point upwards or downwards.

Combustion flue gas analysis has long been a key tool for optimizing the combustion of large power generation boilers. Innovative customers have exploited reliable analyzers to achieve new goals, such as NOx reduction, and slag prevention. The measurement of Oxygen has been dominated by the in situ ZrO₂ probe, which provides a point measurement requiring an array of probes across a flue gas duct in order to arrive at a good average reading. Good granularity is afforded by this array, opening a furnace diagnostic capability detect burner and coal mill problems. to The Measurement of CO is most commonly made with infra red technology in either an extractive configuration, across duct line-of-sight configuration, or dual pass probe configuration. CO is typically found in low PPM levels, so automatic control on CO is

more difficult. New tunable diode laser technology has the capability of measuring O_2 , CO and NOx. As with the traditional Infra-red technology, across duct line-of-sight configurations inherently average across a flue gas duct, minimizing the need for multiple instruments, but affording poor granularity within a given optical path.

New installation locations are being attempted, with hotter zones ahead of the economizer producing less abrasive fly ash. Variable insertion probe mounts afford the ability to find the ideal location within a flue gas duct.

Innovative customers use flue gas analyzer to detect leaks in air heaters or duct transitions, and also modify heat rate calculations of in-leakage. Gas turbines do not use flue gas analysis internally, but are increasingly using them to measure the final oxygen from a duct burner ahead of a heat recovery steam generator.

Continued research into fuel cell sensing technology has yielded a new sensor for the measurement of CO in PPM levels.

Maximum benefit from the use of flue gas analyzers results from close collaboration between instrument suppliers, plant instrument engineers who implement them and operations personnel that use them on a daily basis.

2.1.2. Benefits of Optimizing Combustion Efficiency of Furnace by Reducing Excess Air

By monitoring flue gas from flue gas analyzer and correspondingly / simultaneously controlling excess air quantity by the damper at the blower side, coal consumption would be reduced detailed calculation are at annexure 2. And since extra unwanted air would

be avoided, it will result in higher furnace temperature, hence high melting temperature. Implementation of above project gives a good energy saving potential in fuel. This project needs investment cost only for the flue gas analyzer, and then setting the damper.

Standard Bench Mark Values for coal Furnaces:

Air required per Kg of coal	10.8%
Flue gas per Kg of coal	11.7%
CO ₂ in Flue gas	10-13%
Excess air	30 to 60%

2.1.3. Technology Specification

For implementation of the proposed project, the technical specifications are provided in Annexure 7.

2.1.4. Suitability or Integration with Existing Process and Reasons for Selection

This is the simplest and widely accepted measure for energy cost reduction in the Foundry industry. It does not affect the process but improves the process efficiency since these furnaces save fuel consumption.

Advantages:-

- Optimum well capacity
 Less losses
- High efficiency
 Wide range with good efficiency
- > Optimum blower specifications (quantity and pressure)
- > Optimum ratio of the air delivered
- Minimum pressure drop and turbulence of the combustion air

2.1.5. Availability of Technology

Now days when energy cost is high, it is poor practice to use a conventional cupola furnace. As far as technology is concerned Flue gas Analyzers are available in local/ national market. It is well proven technology which is adopted in many of the other similar and dissimilar units.

2.1.6. Source of Technology

Local vendors can arrange Flue gas Analyzer at order. Local service providers are also available at Batala, Jalandhar and Ludhiana. More details of service provider are given in annexure 6.

2.1.7. Terms and Conditions after Sale

Warranty period of one year will be provided from the date of invoice against any manufacturing defects. Details are provided in Annexure 7.

2.1.8. Process down Time during Implementation

Technology provider will bring the complete setup for the proposed project from their site and make all the arrangements for implementation at the client's site. And the process will be effected for a period of 3 days, when all the required is at the client's site.

2.2. Life Cycle Assessment

Life of the proposed flue gas analyzer will be around 5 to 10 years which depends on the operating conditions and maintenance at client's side.

2.3. Suitable Unit for Implementation of the Identified Technology

For estimation of the saving potential on implementation of this project, here the Foundry units engaged in making castings, having furnaces can be considered.

3. ECONOMIC BENEFITS FROM PROPOSED TECHNOLOGY

3.1. Technical Benefits

3.1.1. Electricity savings per year

Project of Installation of flue gas analyzer will not result in savings of electricity consumption but will lead to reduction in the fuel consumption.

3.1.2. Fuel savings per year

The fuel consumption will reduce by 3.21 tonne per annum.

3.1.3. Improvement in product quality

This project is not contributing to any improvement in product quality but the production environment and efficiency.

3.1.4. Improvement in production

This project is not contributing for increasing in production in Foundry units.

3.1.5. Reduction in raw material consumption

This project is not contributing for increasing in raw material consumption of Foundry units.

3.1.6. Reduction in other losses

This project does not contribute to any reduction in any loss.

3.2. Monetary Benefits

Annual monetary savings with installation of Flue Gas Analyzer will be `0.48 Lakhs per year with reduction in consumption of Coal is estimated to be about 3.21 tonne per year.

S. No.	Parameters	Units	Existing System	Proposed System
1.	Raw Material	Tonne / batch	2.38	2.38
2.	Coal Consumption (`15/Kg)	Kg/batch	384.8	372.0
3.	Raw Material rejection	Kg/batch	160	160
4.	Cost per batch	У batch	5772	5579
5.	Annual Production Cost	`(in lakh)/ year	14.43	13.95
6.	Annual Coal Consumption	Tonne/ year	96.2	92.99
7.	Annual Production	Tonne/ year		555
8.	Annual Coal Consumption reduction	Tonne/ year		3.21
9.	Monetary savings	`(in lakh)/ year		0.48144

Table 3.1 Monetary savings

S. No.	Parameters	Units	Value	
1.	Oxygen % in Flue Gases	%	6.00	
2.	Excess Air in Flue Gases	%	40.0	
3.	Temperature of Flue gases	0 C	300	
4.	Difference on Excess Air	%	50.0	
5.	Fuel Savings	%	3.34	
6.	Coal Savings	Tonne/ Annum	3.21	
7.	Monetary savings	`/Annum	48143.53	

Table 3.2 Proposed Flue Gas Composition

3.3. Social Benefits

3.3.1. Improvement in Working Environment in the Plant

The proposed system will burn the fuel efficiently, so less fuel would be required every batch thus working environment in the plant will be cleaner when compared to the existing system.

3.3.2. Improvement in Skill Set of Workers

The technical skills of workers will definitely improve. Training on the regular maintenance will help in improving the technical understanding of the workers.

3.4. Environmental Benefits

The major GHG reduction would be in CO_2 reduction. Emission reductions are estimated around 6.4 tons of CO_2 per annum.

4. INSTALLATION OF THE PROPOSED TECHNOLOGY

4.1. Cost of Technology Implementation

The cost of technology quoted by the vendor is `0.97 lakh.

Table 4.1 Details of Proposed Technology Installation Cost

S. No.	Particular	Cost in `
1	Equipment cost	94780
2	Taxes @ 2.0%	1896
3	Other cost	3000
4	Total Cost	99676

4.1.1. Technology Cost

Cost of the project is about `1.00 Lakhs which includes the purchase of Flue Gas Analyzer.

4.1.2. Other Cost

Other costs required will be `0.03 Lakh which includes commissioning, manpower cost, transportation etc.

4.2. Arrangements of Funds

4.2.1. Entrepreneur's Contribution

Entrepreneur will contribute 25% of the total project cost which is `0.25 Lakhs.

4.2.2. Loan Amount

Remaining 75% cost of the proposed project will be borrowed from bank, which is `0.75 Lakhs.

4.2.3. Terms & Conditions of Loan

The interest rate is considered at 10% which is normal rate of interest for energy efficiency projects. The loan tenure is 5 years excluding initial moratorium period is 6 months from the date of first disbursement of loan.

4.3. Financial Indicators

4.3.1. Cash Flow Analysis

Profitability and cash flow statements have been worked out for a period of 8 years. The financials have been worked out on the basis of certain reasonable assumptions, which are outlined below. The cost of equipment considered is inclusive of hot water storage tanks also.

- The Operation and Maintenance cost is estimated at 4 % of cost of total project with 5 % increase in every year as escalations.
- > Interest on term loan is estimated at 10 %.
- > Depreciation is provided as per the rates provided in the companies Act.

Based on the above assumptions, profitability and cash flow statements have been prepared and calculated in Annexure-3.

4.3.2. Simple Payback Period

The total project cost of the proposed technology is `1.00 Lakhs and monetary savings due to reduction in Coal consumption is `0.48 Lakhs hence, the simple payback period works out to be 2.07 years.

4.3.3. Net Present Value (NPV)

The Net present value of the investment at 10% works out to be `0.76Lakhs.

4.3.4. Internal Rate of Return (IRR)

The after tax Internal Rate of Return of the project works out to be 30.97%. Thus the project is financially viable.

4.3.5. Return on Investment (ROI)

The average return on investment of the project activity works out at 26.12%.

Table 4.2Financial Indicators of Proposed Technology

S No	Particular	Unit	Value
1	Simple Payback	Year	2.07
2	NPV	` In Lakh	0.76
3	IRR	%age	30.97
4	ROI	%age	26.12
5	DSCR	Ratio	1.97

4.4. Sensitivity analysis in realistic, pessimistic and optimistic scenarios

A sensitivity analysis has been carried out to ascertain how the project financials would behave in different situations like when there is an increase in rupees savings or decrease in rupees savings. For the purpose of sensitive analysis, two following scenarios have been considered.

> Optimistic scenario (Increase in monetary savings by 5%)

Pessimistic scenario (Decrease in monetary savings by 5%)

In each scenario, other inputs are assumed as a constant. The financial indicators in each of the above situation are indicated along with standard indicators.

Table 4.5	Censitivity Analysis in Differen									
Scenario	Monetary Benefit(`Lakh/year)	IRR (%)	NPV(in Lakh)	ROI (%)	DSCR					
Pessimistic	0.46	28.59	0.67	25.86	1.87					
Base	0.48	30.97	0.76	26.12	1.97					
Optimistic	0.51	33.32	0.85	26.35	2.08					

Table 4.3 Sensitivity Analysis in Different Scenarios

4.5. Procurement and Implementation Schedule

Procurement and implementation schedule required for implementation of this technology is about 7 weeks and 3 days required as a process break down. Details of procurement and implementation schedules are shown in Table 4.4 below

Table 4.4	Procurement and Implementation Schedule
-----------	---

S No	Activities				I	Neek	S	
5 . NO.	. Activities	1	2	3	4	5	6	7
1	Identification of furnace							
2	Planning and material order							
3	Procurement							
4	Commissioning							

ANNEXURES

Annexure 1: Energy audit data used for baseline establishment

Flue Gas Analysis:

Parameters

Excess Oxygen %	9.95 %
Excess Air %	90 %
Flue Gas Temp. ⁰C	250-300

S. No.	Parameters	Unit	Value
1.	Oxygen % in Flue Gases	%	9.95
2.	Excess Air in Flue Gases	%	90.0
3.	Temperature of Flue gases	0C	250 - 300
4.	Raw Material	Tonne / batch	2.38
5.	Coal Consumption (` 15/Kg)	Kg/batch	384.8
6.	Raw Material rejection	Kg/batch	160
7.	Cost per batch	⊻ batch	5772
8.	Annual Production Cost	`(in lakh)/ year	14.43
9.	Annual Coal Consumption	Tonne / Annum	96.2

Annexure 2: Detailed Technology Assessment Report

S. No.	Parameters	Units	Existing System	Proposed System
1.	Raw Material	Tonne / batch	2.38	2.38
2.	Coal Consumption (` 15/Kg)	Kg/batch	384.8	372.0
3.	Raw Material rejection	Kg/batch	160	160
4.	Cost per batch	ץ batch	5772	5579
5.	Annual Production Cost	`(in lakh)/ year	14.43	13.95
6.	Annual Coal Consumption	Tonne/ year	96.2	92.99
7.	Annual Production	Tonne/ year		555
8.	Annual Coal Consumption reduction	Tonne/ year		3.21
9.	Monetary savings	`(in lakh)/ year		0.48144

S. No.	Parameters	Units	Value
1.	Oxygen % in Flue Gases	%	6.00
2.	Excess Air in Flue Gases	%	40.0
3.	Temperature of Flue gases	0 C	300
4.	Difference on Excess Air	%	50.0
5.	Fuel Savings	%	3.34
6.	Coal Savings	Tonne/ Annum	3.21
7.	Monetary savings	`/Annum	48143.53

Annexure 3: Detailed Financial Calculations

Name of the Technology	Flue Gas Analyzer			
Details	Unit	Value	Basis	
No. of Operating Days	Days	250		
No. of Shifts/ Hours	No. / Hours	1/8		
Proposed Investment				
Plant & Machinery	` (in lakh)	0.97		
Civil Work	` (in lakh)	0.00		
Erection & Commissioning	` (in lakh)	0.03		
Misc. Cost	` (in lakh)	0.00		
Total Investment	` (in lakh)	1.00		
Financing pattern				
Own Funds (Equity)	` (in lakh)	0.25	Feasibility Study	
Loan Funds (Term Loan)	` (in lakh)	0.75	Feasibility Study	
Loan Tenure	Years	5.00	Assumed	
Moratorium Period	Months	6.00	Assumed	
Repayment Period	Months	66.00	Assumed	
Interest Rate	%age	10.00%		
Estimation of Costs				
O & M Costs	% on Plant & Equip	4.00	Feasibility Study	
Annual Escalation	%age	5.00	Feasibility Study	
Estimation of Revenue				
Coal Savings	Tonne/Year	3.21		
Cost of Coal	`/Tonne	15000		
St. line Depn.	%age	5.28	Indian Companies Act	
IT Depreciation	%age	80.00	Income Tax Rules	
Income Tax	%age	33.99	Income Tax	

Estimation of Interest on Term Loan

` (in lakh)

					(
Years	Opening Balance	Repaymen	t	Closing Balance	Interest
1	0.75	0.04		0.71	0.09
2	0.71	0.11		0.60	0.07
3	0.60	0.15		0.45	0.05
4	0.45	0.19		0.26	0.04
5	0.26	0.19		0.07	0.02
6	0.07	0.07		0.00	0.00
		0.75			
WDV Depre	ciation				`(in lakh)
Particulars /	/ years			1	2
Plant and Machinery					
Cost		1.00		0.20	
Depreciation			0.80		0.16
WDV				0.20	0.04

Installation of flue gas analyser to reduce excess air and optimizing furnace combustion efficiency

Projected Profitability (in lakh)							h)	
Particulars / Years	1	2	3	4	5	6	7	8
Electricity savings	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
Total Revenue (A)	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
Expenses								
O & M Expenses	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06
Total Expenses (B)	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06
PBDIT (A)-(B)	0.44	0.44	0.44	0.44	0.43	0.43	0.43	0.43
Interest	0.09	0.07	0.05	0.04	0.02	0.00	0.00	0.00
PBDT	0.35	0.37	0.38	0.40	0.42	0.43	0.43	0.43
Depreciation	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
PBT	0.30	0.32	0.33	0.35	0.36	0.38	0.38	0.37
Income tax	0.00	0.07	0.13	0.14	0.14	0.15	0.15	0.14
Profit after tax (PAT)	0.30	0.25	0.20	0.21	0.22	0.23	0.23	0.23
Computation of Tax						•	(in lak	h)
Particulars / Years	1	2	3	4	5	6	7	8
Profit before tax	0.30	0.32	0.33	0.35	0.36	0.38	0.38	0.37
Add: Book depreciation	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Less: WDV depreciation	0.80	0.16	-	-	-	-	-	-
Taxable profit	(0.44)	0.21	0.38	0.40	0.42	0.43	0.43	0.43
Income Tax	-	0.07	0.13	0.14	0.14	0.15	0.15	0.14
Projected Balance Sheet							(in lak	h)
Particulars / Years	1	2	3	4	5	6	7	8
Share Capital (D)	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Reserves & Surplus (E)	0.30	0.55	0.75	0.96	1.18	1.41	1.64	1.87
Term Loans (F)	0.71	0.60	0.45	0.26	0.07	0.00	0.00	0.00
Total Liabilities (D)+(E)+(F)	1.26	1.40	1.45	1.47	1.51	1.66	1.89	2.12
Assets	1	2	3	4	5	6	7	8
Gross Fixed Assets	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Less Accumulated Depreciation	0.05	0.11	0.16	0.21	0.26	0.32	0.37	0.42
Net Fixed Assets	0.94	0.89	0.84	0.79	0.73	0.68	0.63	0.58
Cash & Bank Balance	0.32	0.51	0.61	0.69	0.77	0.98	1.26	1.55
TOTAL ASSETS	1.26	1.40	1.45	1.47	1.51	1.66	1.89	2.12
Net Worth	0.55	0.80	1.00	1.21	1.43	1.66	1.89	2.12
Debt Equity Ratio	2.85	2.40	1.80	1.05	0.30	0.00	0.00	0.00

Projected Cash Flow	` (ir	n lakh)							
Particulars / Years	0	1	2	3	4	5	6	7	8
Sources									
Share Capital	0.25	-	-	-	-	-	-	-	-
Term Loan	0.75								
Profit After tax		0.30	0.25	0.20	0.21	0.22	0.23	0.23	0.23
Depreciation		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Total Sources	1.00	0.35	0.30	0.25	0.26	0.27	0.28	0.28	0.28

18

Installation of flue gas analyser to reduce excess air and optimizing furnace combustion efficiency

Particulars / Years	0	1	2	3	4	5	6	7	8
Application									
Capital Expenditure	1.00								
Repayment Of Loan	-	0.04	0.11	0.15	0.19	0.19	0.07	0.00	0.00
Total Application	1.00	0.04	0.11	0.15	0.19	0.19	0.07	0.00	0.00
Net Surplus	-	0.32	0.19	0.10	0.08	0.09	0.21	0.28	0.28
Add: Opening Balance	-	-	0.32	0.51	0.61	0.69	0.77	0.98	1.26
Closing Balance	-	0.32	0.51	0.61	0.69	0.77	0.98	1.26	1.55

IRR								` (in la	kh)
Particulars / months	0	1	2	3	4	5	6	7	8
Profit after Tax		0.30	0.25	0.20	0.21	0.22	0.23	0.23	0.23
Depreciation		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Interest on Term Loan		0.09	0.07	0.05	0.04	0.02	0.00	-	-
Cash outflow	(1.00)	-	-	-	-	-	-	-	-
Net Cash flow	(1.00)	0.44	0.37	0.31	0.30	0.29	0.28	0.28	0.28
IRR	30.97 %								
NPV	0.76								

Break Even Point	``	(in lak	h)					
Particulars / Years	1	2	3	4	5	6	7	8
Variable Expenses								
O & M Expenses (75%)	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04
Sub Total(G)	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04
Fixed Expenses								
O & M Expenses (25%)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Interest on Term Loan	0.09	0.07	0.05	0.04	0.02	0.00	0.00	0.00
Depreciation (H)	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Sub Total (I)	0.15	0.13	0.12	0.10	0.08	0.07	0.07	0.07
Sales (J)	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
Contribution (K)	0.45	0.45	0.45	0.45	0.45	0.44	0.44	0.44
Break Even Point (L= G/I)%	33.06%	28.67%	26.00%	22.49%	18.52%	15.24%	14.95%	15.17%
Cash Break Even {(I)-(H)}%	21.40%	16.97%	14.27%	10.72%	6.69%	3.37%	3.03%	3.19%
Break Even Sales (J)*(L)	0.16	0.14	0.13	0.11	0.09	0.07	0.07	0.07

		`	(in lakh	ı)
5	6	7	8	То

Particulars / Years 2 3 1 4 otal 0.35 0.36 0.38 0.38 0.37 2.79 0.32 0.33 0.30 Net Profit Before Taxes Net Worth 0.55 0.80 1.00 1.21 1.43 1.66 1.89 2.12 10.67 26.12%

Installation of flue gas analyser to reduce excess air and optimizing furnace combustion efficiency

Debt Service Coverage	` (in lakh)								
Particulars / Years	1	2	3	4	5	6	7	8	Total
Cash Inflow									
Profit after Tax	0.30	0.25	0.20	0.21	0.22	0.23	0.23	0.23	1.41
Depreciation	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.32
Interest on Term Loan	0.09	0.07	0.05	0.04	0.02	0.00	0.00	0.00	0.26
Total (M)	0.44	0.37	0.31	0.30	0.29	0.28	0.28	0.28	1.99

DEBT

Interest on Term Loan	0.09	0.07	0.05	0.04	0.02	0.00	0.00	0.00	0.26
Repayment of Term Loan	0.04	0.11	0.15	0.19	0.19	0.07	0.00	0.00	0.75
Total (N)	0.12	0.18	0.20	0.22	0.20	0.08	0.00	0.00	1.01
DSCR (M/N)	3.56	2.06	1.51	1.34	1.43	3.70	0.00	0.00	1.97
Average DSCR	1.97								

Annexure 4: Procurement and implementation schedule

S No	Activities	Weeks								
0.110.	Adimics			3	4	5	6	7		
1	Identification of furnace									
2	Planning and material order									
3	Procurement									
4	Commissioning									

Annexure 5: Break-up of Process down Time

S No	Activities	Weeks				
		1/7	6/7	7/7		
1	Identification of furnace					
2	Installation of a flue gas analyzer					
3	Testing & Trial					

Annexure 6: Details of technology service providers

S. No.	Source of product	Details of Local vendor / service provider
1.	PRISM AUTOMATION PVT. LTD	Mr Deepak Verma S.C.O.: 51, LEVEL-SECOND, SECTOR 47-C, CHANDIGARH-160037 Cell: 9316120696, 9316520696, PHONE: 0172-3200696, E-mail: info@prismautomation.in ; prism35@rediffmail.com
2.	INDICA ENGINEERS	Mr Aman Tuli Plot no – 182/74, Industrial Area, Ph – 1, Chandigarh. Tel - 0172- 5062182, Email – <u>indica9@rediffmail.com</u>

Quotations or Techno-commercial bids for new technology

Annexure 7: /equipment

PRISM AUTOMATION PVT.

S.C.O.: 51, LEVEL-SECOND, SECTOR 47-C, CHANDIGARH-160037 Cell: 9316120696, 9316520696, PHONE: 0172-3200696, TELE FAX: 0172-5047696

E-mail: info@prismautomation.in ; prism35@rediffmail.com , Web Site: www.prismautomation.in

QUOTATION

To, M/s CII Chandigarh

Our Quotation No :- PAPL/11-12/348 Dated : 27.7.2011

KIND ATTN: MR. ANKIT NAGAR

Your Enquiry No:- VERBAL

Dear Sir,

We thank you for above referred enquiry. We are pleased to offer our **TECHNO-COMMERCIAL OFFER** as hereunder. We are confident that the same will be in line with your requirement.

S.NO	DESCRIPTION	QUANTITY	UNIT PRICE
1.	TESTO 340 - FLUE GAS ANALYSER Item Code 0632 3340 testo 340 flue gas analyser, rechargeable battery and calibration protocol included, equipped with O ₂ sensor & Pressure-/Flow Measurement. A second measurement module must be fitted in testo 340; The instrument will not be able to function otherwise. Three additional measurement modules can be fitted	1 NO.	₹ 94780/-
2.	CO (H ₂ COMPENSATED) MEASUREMENT MODULE Item Code 0393 1100 CO (H ₂ compensated) measurement module, 0 to 10,000 ppm	1 NO.	₹ 60500/-
3.	NO MEASUREMENT MODULE Item Code 0393 1150 NO measurement module, 0 to 3,000 ppm	1 NO.	₹ 65181/-

S.NO	DESCRIPTION	QUANTITY	UNIT PRICE
4.	SO ₂ MEASUREMENT MODULE Item Code 0393 1250 SO ₂ measurement module, 0 to 5,000 ppm	1 NO.	₹ 71880/-
<mark>5</mark> .	TRANSPORT CASE FOR TESTO 340 Item Code 0516 3400 Transport case for analyzer and probes	1 NO.	₹ 18500/-
6.	MAINS UNIT Item Code 0554 1096 Mains unit 100 240V for mains operation or battery charging	1 NO.	₹ 5650/-
<mark>7</mark> .	Flue gas probe, modular, 700 mm immersion depth, incl. probe stop, thermocouple NiCr- Ni (TI) Tmax 500°C and hose 2.2 m	1 NO.	₹ 32900/-
8.	"Easy Emission" software with USB cable to connect instrument to PC	1 NO.	₹ 24700/-
9.	SPARE PARTICLE FILTERS (100FF) Item Code 0554 3385 SPARE PARTICLE FILTERS (100FF) T33X RANGE	1 NO.	₹ 2500/-
	COMME	RCIAL TERM	S

Payment Terms :- 40% advance ,	Freight: To Pay	
balance against Proforma Invoice		
Delivery :- WITH IN 2-3 WEEKS	S.T/C.S.T:- 2% AGAINST FORM C	
Excise Duty: NIL	P&F:- NIL	

Thanking & assuring you our best services all the time.

We now wait to receive your valued order.

Yours Truly, For Prism Automation Pvt. Ltd

DEEPAK VERMA 09316120696

Bureau of Energy Efficiency (BEE) (Ministry of Power, Government of India) 4th Floor, Sewa Bhawan, R. K. Puram, New Delhi - 110066 Ph.: +91 - 11 - 26179699 (5 Lines), Fax: +91 - 11 - 26178352 Websites: www.bee-india.nic.in, www.energymanagertraining.com

Confederation of Indian Industry

CII – AVANTHA Centre for Competitiveness Block No.3, Dakshin Marg Sector 31-A, Chandigarh - 160030 Tel: 0172-5080784 (D) / 2666517-19 Fax: 0172-2606259 / 2614974 E-mail: harinder.singh@cii.in Website: www.ciicfc.org

India SME Technology Services Ltd DFC Building, Plot No.37-38, D-Block, Pankha Road, Institutional Area, Janakpuri, New Delhi-110058 Tel: +91-11-28525534, Fax: +91-11-28525535 Website: www.techsmall.com